

Dissecting a Python

Ransomware distributed

through GitHub repositories

Introduction
In an era where cybersecurity professionals are increasingly focused on sophisticated ransomware
operations, particularly those involving double extortion, data leaks, and advanced intrusion techniques,
it’s easy to overlook the persistence of simpler, yet still dangerous, threats. While many assume that
modern ransomware campaigns are hidden deep within closed forums or distributed through tightly
controlled infrastructures, this case serves as a reminder that malicious actors continue to leverage
public and widely accessible platforms for malware delivery. GitHub, a service designed for open
collaboration and code sharing, is being misused to host and distribute malicious payloads in plain sight.
This tactic not only lowers the barrier for threat actors but also highlights an often underestimated risk:
the blending of common development tools with criminal intent.

During out threat investigations, we found a sample of a new sample of Ransomware developed in Python
and distributed through an .iso file hosted on GitHub. The ransomware leverages multiple stages for
infection, privilege escalation, persistence, and file encryption. The threat actor behind this campaign
demonstrates moderate sophistication, utilizing PyInstaller to obfuscate the payload and combining AES
+ RSA for robust file encryption.

The diagram below illustrates the complete infection chain observed during the analysis, from initial
delivery via a malicious ISO file to final payload execution and system compromise.

Figure 1 - Infection Chain

 3 of 18

Technical Analysis
After an initial investigation phase, it was possible to trace the repository used to spread the malware. The
malware is delivered by downloading from a github link, which is currently no longer active
(hxxps[:]//github[.]com/BalletsPistol/_/raw/refs/heads/main/invoice.iso).

Figure 2 - Github repository of the threat actor

 4 of 18

The initial access vector for this attack is a malicious disk image file named Invoice.iso

Name Invoice.iso

SHA256 c8eebf23226c3b5d37c0c2990a2fa19eba1762a99bf9b3d61d3a8fe22e352cde

Once mounted, the .iso file reveals a folder containing multiple scripts and a password-protected ZIP
archive housing the ransomware executable. Alongside these components, a Windows shortcut (.lnk) file
is present, which serves as the initial trigger for the infection.

When executed, the shortcut runs the following command:

C:\Windows\System32\cmd.exe /c %CD%_\main.bat

 Then, the hidden link file launches the batch script MAIN.BAT stored within the mounted volume.

Figure 3- Invoice.iso

Figure 4 – Command executed and malicious file in the “_” folder

 5 of 18

The main.bat script is designed to silently initiate the infection chain and establish persistence on the
target system.

It begins by defining a variable named setcatnapmanger, which is used to execute a secondary batch file
(harddiskprobable.bat) in a minimized window to avoid raising suspicion. The script then proceeds to
manipulate the Windows registry, associating the .hwy file extension with the previously defined malicious
command. This registry hijacking allows the malware to be executed simply by opening a file with that
extension, contributing to its persistence and potential reactivation.

To elevate privileges, the script leverages a well-known UAC bypass technique. It creates a scheduled task
named fszevq that launches fodhelper.exe via cmd.exe. Immediately after creating the task, the script
executes it using the schtasks /run command.

Once the initial setup is complete, control is passed to the secondary script harddiskprobable.bat

Figure 5 - MAIN.bat script

Figure 6 - harddiskprobable.bat

 6 of 18

This batch script performs several suspicious actions to establish persistence and maintain control over a
system. It copies files from an ISO to a system directory, changes the current user's password, sets up
automatic login, modifies boot settings to start in Safe Mode, and tries to create a service to run a script. If
that fails, it uses a registry tweak to execute a batch file at every login.

Following the initial stages of the infection, control is passed to a Visual Basic script named
endorseexhale.vbs

• endorseexhale.vbs executes the script crumpledproperty.bat

crumpledproperty.bat: This script extracts an executable named Ku1uJxA7gZkyRyGu.exe from a
password-protected ZIP archive using the embedded password AeuDk3S#.

Once launched the executable Ku1uJxA7gZkyRyGu.exe the infection goes on rapidly. Indeed, the
ransomware place the encryption public key in the ProgramData folder.

The ransomware then proceeds to recursively scan and encrypt user files within specific target folders,
appending the extension .iDCVObno to each affected file.

Figure 7 - endorseexhale.vbs

Figure 8 - crumpledproperty.bat

Figure 9 - Encryption public key

Figure 10 - Files Encrypted

 7 of 18

As the encryption process completes, the malware modifies the victim’s desktop environment. A custom
wallpaper is set, displaying a ransom image in a style that closely resembles the branding typically used
by the Lockbit ransomware group.

A ransom note is also dropped onto the desktop with the filename RESTORE-MY-FILES.TXT.

Figure 11 - Restore-My-Files.hta

Figure 12 - Ransome note

 8 of 18

So, after an initial view of the sample behavior we move on to analyze in detail the main malware module
named Ku1uJxA7gZkyRyGu.exe (aka Encryptor.exe).

File Ku1uJxA7gZkyRyGu.exe

SHA256 CDD03FA3B1D6BC62DE9E946721ADAACA5557A61D2C414A4DF75F3BB4F26D71FA

The payload was compiled using PyInstaller, a tool commonly used to package Python applications into
standalone executables. This approach allows the malware to be executed on systems without requiring a
separate Python interpreter or any dependencies, significantly improving its portability and ease of
deployment.

Figure 13 - Pyinstaller

 9 of 18

The Encryptor.pyc file represents the module used by the ransomware to encrypt data on the infected
machine.

Figure 14 - Encryptor components

 10 of 18

In this paragraph we will see the explanation of the decompiled bytecode and its logical structure. The
entry point is represented by the main function which orchestrates the key components of the
ransomware’s logic. This includes key generation, file enumeration, encryption routines, and the
deployment of ransom notes.

The structure of the function is the following:

The ransomware constructs full file paths using os.path.join() and systematically generates ransom notes
in multiple user-accessible locations. These include:

• C:\Users\<username>\Desktop\RESTORE-MY-FILES.TXT
• C:\Users\<username>\Desktop\Restore-My-Files.hta
• C:\Users\<username>\Documents\RESTORE-MY-FILES.TXT
• C:\Users\<username>\Pictures\RESTORE-MY-FILES.TXT
• C:\Users\<username>\Music\RESTORE-MY-FILES.TXT

It generates ransom notes in both .TXT and .HTA formats on the desktop and other directories.

"All of your important files have been encrypted and stolen and only we can decrypt your
files.
If you refuse to cooperate, your decryption software will be permanently deleted, and
your stolen files will be published publicly.
Contact us: RestoreMyData@protonmail[.]com
You have 72 hours to pay and contact us."

The message attempts to instill urgency and fear, while also offering to decrypt one file as a demonstration
of their capabilities, a technique commonly used to build credibility.

Figure 15 - Encryptor main function

 11 of 18

At the beginning of the decompiled code, we observe the importation of several standard Python libraries
and the declaration of key constants that support the malware's functionality.

It uses several standard Python libraries:
• the os module is used extensively for file path construction and filesystem interaction
• the secrets library provides cryptographically secure random number generation, specifically for

generating AES keys
• the cryptography library is employed to handle the implementation of both symmetric (AES) and

asymmetric (RSA) encryption routines.

There is a method (list_files()) that traverses the file system to enumerate files in target folders. It likely
filters for specific extensions or file sizes to avoid system files and speed up encryption.

Figure 1135 - Imports and Constants

Figure 17 - File listing

 12 of 18

After listing the files contained in the drive it defines the methods for the generation of the AES_key and
for the encryption of the files.

The actual encryption is performed by a function named encrypt_file(), which is designed to skip certain
file types including .exe, .dll, and .lnk, thereby avoiding files that could hinder system stability or draw
unnecessary attention. Another method, encrypt_files(), coordinates the encryption of all discovered files,
appending the custom extension .iDCVObno to each one.
The encryption scheme used by the ransomware was identified as a hybrid system combining AES and
RSA. The AES key is encrypted using RSA public key encryption with OAEP padding, providing secure key
encapsulation. For OAEP padding, SHA-256 is used both as the main hash algorithm and as the MGF1
(Mask Generation Function) hash.

For the final operations the ransomware configures the .hta ransom note to run automatically at system
startup, ensuring that the victim is consistently reminded of the compromise.

Figure 18 - Method for AES encryption

Figure 19 - .hta file persistence

 13 of 18

It also deletes all Windows Volume Shadow Copies, a common anti-recovery tactic that prevents the
restoration of files via built-in backup mechanisms.

Lastly, it alters the desktop wallpaper to visually signal that the system has been encrypted, further
increasing psychological pressure on the victim to comply with the ransom demand.

Figure 20 - Delete shadow copies

Figure 21 - New wallpaper

 14 of 18

Conclusion
This case reinforces an important point: the barrier to entry for developing and spreading ransomware has
significantly lowered. As a result, defenders must remain vigilant not only against advanced persistent
threats but also against opportunistic campaigns that exploit public resources and rely on straightforward
yet effective techniques. Monitoring unconventional delivery vectors and maintaining visibility into
seemingly benign platforms like GitHub is now an essential part of a comprehensive defensive strategy.

It demonstrates how accessible tools and platforms can be leveraged to create and distribute functional
and damaging malware. The use of GitHub as a delivery channel, combined with the implementation of
multiple infection stages underscores the evolving tactics of less-sophisticated but still capable
adversaries.

 15 of 18

Indicators of Compromise (IOCs)
File HASH

Invoice.img c8eebf23226c3b5d37c0c2990a2fa19eba1762a99bf9b3d61d3a8fe22e352cd
e

Ku1uJxA7gZkyRyGu.ex
e

cdd03fa3b1d6bc62de9e946721adaaca5557a61d2c414a4df75f3bb4f26d71f
a

KU1UJXA7.7Z 959b98e7fc38bc8081227b2a6e1794096a4a30728c827abcba6306e743e9e
3a7

MAIN.BAT ccb231d5575f5f828809cbf8d4596ac3e5fe1064a8f379e14f36e827c0f9e715

ENDORSEE.VBS 0b269c848b94cb9b71fb19c56c2b416e64cf667424ff955b58fe823a54cb17f
1

CRUMPLED.BAT e1a029166bd420225101c0a2aec463e8cb99ab8592bff37514e54cbf9bcdb0
29

HARDDISK.BAT 87246bf7f22b9da2848553dc935a30bbb8e72b09844cb30646bd7c9eb2d87
26d

E-mail RestoreMyData@protonmail[.]com

Extension .iDCVObno

 16 of 18

Yara rule

rule PythonRansomware

{

 meta:

 description = "Detects iso file and VBS/bat scripts used by Python-based ransomware for
privilege escalation and persistence"

 author = "Tinexta Cyber"

 date = "2025-06-10"

 category = "malware/Ransomware"

 malware_family = "PythonRansomware"

 strings:

 $bat1 = "net session >nul 2>&1"

 $bat2 = "bcdedit /set {current} safeboot minimal"

 $bat3 = "schtasks /Create /SC ONCE /TN \"fszevq\""

 $bat4 = "reg.exe add \"HKCU\\Software\\Classes\\.hwy\\Shell\\Open\\command\""

 $bat5 = "reg add HKLM\\System\\CurrentControlSet\\Control\\SafeBoot\\Minimal\\kpsxc"

 $bat6 = "explorer.exe, crumpledproperty.bat"

 $vbs1 = "WScript.CreateObject(\"WScript.Shell\")"

 $vbs2 = "ws.Run \"C:\\ProgramData\\crumpledproperty.bat\""

 condition:

 4 of ($bat*) or (all of ($vbs*))

}

 17 of 18

Autori
Giovanni Pirozzi

 18 of 18

	Introduction
	The diagram below illustrates the complete infection chain observed during the analysis, from initial delivery via a malicious ISO file to final payload execution and system compromise.
	Technical Analysis
	Conclusion
	Indicators of Compromise (IOCs)
	Yara rule

